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Background and Purpose MCSC framework

Semi-supervised learning has demonstrated potential in medical image * On the output level, two losses:

segmentation by utilizing unlabelled data. 1 supervision loss Lsup ( in Figure 1) between the segmentation

* However, they do not explicitly capture high-level semantic relations predictions and the limited labelled data.

between distant regions. 2. cross pseudo supervision loss chs (green dashed lines) between the predictions and

 Jointly train CNN and Transformer . .
the pseudo labels in a cross teaching manner.

 Reqularising their features to be semantically consistent across different . . .
J J Y  On the feature level: multi-scale cross contrastive loss L,; (black dashed lines) to

scales based on crossed labels.
 (Code is available on GitHub (QR Code).

enhance feature consistency/distinguishability of feature of the same /different

categories across the whole data (labelled and unlabelled).
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* Total loss function: Fig. The overall architecture of our MCSC framework.
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our model. SCL, supervised local contrastive loss.
DB, discard background pixels as anchor. CroLab,
cross label information of two models to select

Tab. Segmentation results on the ACDC dataset.

GT CTS Ours

Labelled Methods | DSCt | HD| Fig. Visualizations on the ACDC.

UNet-FS 75.6 | 423
18 cases(100 %) nnFormer [39] | 86.6 | 10.6

UNet-LS 472 | 122.3
CCT [19] 514 | 102.9

contrastive sample. Balanced, average the instances
of each class in denominator of SCL. MulSca, multi-
scale feature maps.

4 cases(20 %) CPS [8] 57.9 | 62.6 Branches Mean
CTS [17] 64.0 | 56.4 256 56 28 | DSCt HDJ
MCSC (Ours) | 68.5 | 24.8 v 88.80 4.6
UNetLs | 452 | 556 7 | 883 43
CCT [19] 46.9 | 58.2 v v | 8938 23
2 cases(10 %) CPS [8] 48.8 | 65.6 v / 8892 2.9
CTS [17] 52.0 | 63.7 v v v | 88.35 4.3

MCSC (Ours) | 61.1 | 32.6

Tab. Ablation on the choice of feature maps for

Tab. Segmentation results on the Synapse dataset. Fig. Visualizations on the Synapse. the multi-scale (ACDC, 7 labelled cases).
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