

ofGlasgow

Qianying Liu¹, Xiao Gu², Paul Hendersons¹, Fani Deligianni¹

1. School of Computing Science, University of Glasgow 2. Department of Computing, Imperial College London

Background and Purpose

- MCSC framework
- Semi-supervised learning has demonstrated potential in medical image segmentation by utilizing unlabelled data.
- However, they do not explicitly capture high-level semantic relations between distant regions.
- Jointly train CNN and Transformer
- Regularising their features to be semantically consistent across different scales based on crossed labels.
- Code is available on GitHub (QR Code).

Supervision loss functions

On the output level, two losses:

- 1 supervision loss \mathcal{L}_{sup} (yellow dashed lines in Figure 1) between the segmentation predictions and the limited labelled data.
- 2. cross pseudo supervision loss \mathcal{L}_{cps} (green dashed lines) between the predictions and the pseudo labels in a cross teaching manner.
- On the feature level: multi-scale cross contrastive loss \mathcal{L}_{cl} (black dashed lines) to enhance feature consistency/distinguishability of feature of the same /different categories across the whole data (labelled and unlabelled).

cross pseudo supervision loss (unlabelled data)

 $\mathcal{L}_{cps(cnn)} = \mathcal{L}_{dice}(P^{u}_{cnn}, Y^{u}_{tra}), \quad \mathcal{L}_{cps(tra)} = \mathcal{L}_{dice}(P^{u}_{tra}, Y^{u}_{cnn}).$

- Multi-Scale Contrastive loss (whole data): $\mathcal{L}_{cl} = (\mathcal{L}_{cl_1} + ... + \mathcal{L}_{cl_n})$, each scale \mathcal{L}_{bcl} as \mathcal{L}_{cl_i}
- Balanced contrastive loss:

$$\mathcal{L}_{bcl} = -\frac{1}{|A|} \sum_{a_i \in A} \frac{1}{|A_y| - 1} \sum_{p \in A_y \setminus \{i\}} \log \frac{\exp(a_i \cdot a_p / \tau)}{\sum_{j \in Y_A} \frac{1}{|A_j|} \sum_{a_k \in A_j} \exp(a_i \cdot a_k / \tau)},$$

• Total loss function:

$$\mathcal{L}_{cnn} = \mathcal{L}_{sup(cnn)} + w_{cps}\mathcal{L}_{cps(cnn)} + w_{cl}\mathcal{L}_{cl} \qquad \mathcal{L}_{tra} = \mathcal{L}_{sup(tra)} + w_{cps}\mathcal{L}_{cps(tra)} + w_{cl}\mathcal{L}_{cl}$$

Results

- MCSC outperforms SOTA by more than 3.0% in Dice on two benchmarks.
- <u>ACDC</u> 200 short-axis cardiac MRI, left ventricle (LV), myocardium (Myo), and right ventricle (RV).
- <u>Synapse</u>, abdominal CT, aorta, gallbladder, spleen, left/right kidney, liver, pancreas and stomach.

Fig. The overall architecture of our MCSC framework.

Labelled	Methods	Me DSC↑	Mean DSC↑ HD↓	
$70 \cos \alpha (100\%)$	UNet-FS	91.7	4.0	
70 cases (100%)	BATFormer [16]	92.8	8.0	
	UNet-LS	75.9	10.8	
	CCT [19]	84.0	6.6	
7 cases (10%)	CPS [8]	85.0	6.6	
	CTS [17]	86.4	8.6	
	MCSC (Ours)	89.4	2.3	
	UNet-LS	51.2	31.2	
3 cases (5%)	CCT [19]	58.6	27.9	
	CPS [8]	60.3	25.5	
	CTS [17]	65.6	16.2	
	MCSC (Ours)	73.6	10.5	
	UNet-LS	26.4	60.1	
1 case	CTS [17]	46.8	36.3	
	MCSC (Ours)	58.6	31.2	

Tab. Segmentation results on the ACDC dataset.

Labelled	Methods	DSC↑	HD↓
$18 \cos(100 \%)$	UNet-FS	75.6	42.3
10 cases(100 %)	nnFormer [39]	86.6	10.6
	UNet-LS	47.2	122.3
	CCT [19]	51.4	102.9
4 cases(20 %)	CPS [8]	57.9	62.6
	CTS [17]	<u>64.0</u>	<u>56.4</u>
	MCSC (Ours)	68.5	24.8
	UNet-LS	45.2	55.6
	CCT [19]	46.9	58.2
2 cases(10 %)	CPS [8]	48.8	65.6
	CTS [17]	<u>52.0</u>	63.7
	MCSC (Ours)	61.1	32.6

Cross supervised contrastive learning in multi-scale

Labels for a mini-batch

Fig. CST Multi-scale cross supervised contrastive learning. Pseudo labels from cross-teaching (right) and ground-truth, and used to guide contrastive loss.

Pixel-wise feature alignment

Fig. Visualizations on the ACDC.

Ablations

SCL	DB	CroLab	Balanced	MulSca	Un DSC↑	et HD↓	Transf DSC ↑	ormer HD↓
	\ \	\ \	✓		86.40 87.50 88.23 88.80	8.6 7.4 3.4 4.6	85.22 86.02 86.13 86.53	5.1 4.5 3.2 2.4
1		1	✓	✓	89.38	2.3	87.28	3.5

Tab. Ablation study for the primary components of our model. <u>SCL</u>, supervised local contrastive loss. <u>DB</u>, discard background pixels as anchor. <u>CroLab</u>, cross label information of two models to select contrastive sample. <u>Balanced</u>, average the instances of each class in denominator of SCL. <u>MulSca</u>, multi-scale feature maps.

Branches			Mean		
256	56	28	DSC↑	$\text{HD}\downarrow$	

			I I	'
1			88.80	4.6
	1		88.88	4.2
		\checkmark	88.39	4.5
✓		✓	89.38	2.3
1	1		88.92	2.9
\checkmark	✓	✓	88.35	4.3

Tab. Ablation on the choice of feature maps for the multi-scale (ACDC, 7 labelled cases).

Acknowledgements

We acknowledge funding by China Scholarship Council, EPSRC (EP/W01212X/1) and Royal Society (RGS/R2/212199).

Tab. Segmentation results on the Synapse dataset.

Fig. Visualizations on the Synapse.

References

- 1. Xiangde Luo etal. Semi-supervised medical image segmentation via cross teaching between cnn and transformer. Medical Imaging with Deep Learning, 2022.
- 2. Wenguan Wang, etal. Exploring cross-image pixel contrast for semantic segmentation. ICCV, 2021.
- 3. Jianggang Zhu, etal. Balanced contrastive learning for long-tailed visual recognition. CVPR, 2022.

Contact: 2665227L@student.gla.ac.uk